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Appendix E

A Bayesian Example: Predicting Dose—Response Relationships
from High-Throughput Data and Chemical Structure

This appendix illustrates the use of Bayesian methods to address a common problem in the analysis
of high-throughput data that have relatively large measurement error for the purpose of characterizing
dose-response relationships. Bayesian methods can be particularly useful for synthesizing data and
quantifying uncertainty. To illustrate the utility of Bayesian methods for datasets that have diverse
features, the committee provides an analysis that links two tvpes of data that are captured in two distinct
datasets. The first dataset contains measurements of dose-response relationships of 969 chemicals on one
specific end point related to the activation of the nuclear pregnane X receptor (PXR) pathway. PXR is
involved in the sensing of and initiation of metabolism in response to xenobiotics that enter the body and
has a role in lipid homeostasis. Activation of the PXR pathway is associated with beneficial and injurious
processes, and measurements of the activation of PXR provide information about the biological activity
of a chemical. The data on PXR activation were taken from the US Environmental Protection Agency
ToxCast Phase 1l data in the AttaGene test system, which uses a HepG2 human liver hepatoma cell line to
measure transcription factor activity through gene expression (Judson et al. 2010a,b). The second dataset
contains information about the structures of the tested chemicals. It characterizes each chemical structure
according to 39 features, which are the major principal features extracted from 770 chemical descriptors
produced by the Mold2 program (Hong et al. 2008). The features describe the structure of each of the 969
chemicals in the dataset. The exercise involves the quantitative structure—activity relationship (QSAR)
task of relating chemical structure to a dose—response curve. The information can be used to reduce the
uncertainty in the dose-response relationship for PXR activation measured for a chemical and to predict
the dose—response relationship for an untested chemical.

The task of relating chemical structures to dose-response curves is challenging because of the large
number of potentially relevant chemical features and the lack of prior knowledge relating the features to
the dose-response curves for the outcome being studied (PXR activation). Simple statistical QSAR
models that do not allow for interactions among the structural features are expected to have poor
performance and to underestimate the uncertainty in the prediction. In contrast, more complex statistical
approaches, such as flexible Bavesian models, allow relationships between different types of data to be
unknown beforehand while borrowing information and allowing leaming of lower-dimensional structure.
By fitting a single Bayesian hierarchical model to the entire set of chemical-structure descriptors and
dose—response curves, the model can adapt the width of the uncertainty bands accordingly and accurately
reflect the scope of available information. This full Bayesian approach thus extends the standard QSAR
concept of domain of applicability and provides flexible and adaptive measures of uncertainty.

Figure E-1 shows the raw dose-response data for PXR activation by the chemicals under
consideration. As expected for so many chemicals that have broadly different chemical structures, the
dose-response relationships are highly variable. To predict dose—response values of a new chemical only
on the basis of information available on its chemical structure, it is important to predict the dose-response
curve with a good appraisal of the uncertainty in the prediction. The accuracy of a prediction depends
partly on whether a chemical in the training dataset is similar in structure to the new chemical under
consideration.
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FIGURE E-1 Dose-tesponse records of PXR activation for 969 chemicals represented in the AttaGene ToxCast
Phase 11 data. Dose is presented as concentration (uM) and response as fold increase or decrease in transcription.

To capture nonlinear relationships between dose and response and how the shapes of the
relationships are associated with different chemical structures, two assumptions are made: that cach dose-
response curve is continuous (that is, no “jumps™) and that when two chemicals are structurally alike
(defined by a distance metric) their dose—response curves are similar.

Nonparametric Bayesian approaches provide a convenient framework for applving the two
assumptions for curve estimation. Specifically, the dose-tesponse curves are allowed to be completely
unknown instead of our assuming that the curves follow a particular parametric form, such as a Hill
function. That is accomplished by choosing a prior probability distribution for the entire curve. There is a
rich literature on such priors; the Gaussian processes (GPs) provide a commonly used choice that is
routinely used for many applications. For example, GPs are used routinely in epidemiological studies that
collect information on spatial locations to incorporate “random effects” that characterize unmeasured
spatially indexed covariates, which might act as confounders.

In the present setting, a GP prior is chosen that allows the dose-tesponse curves to change flexibly
according to chemical dose and chemical-structural features. Under the Bayesian nonparametric model
used, two response measurements are assumed to be highly correlated a priori when the doses are similar
and the chemical structures are similar, and the correlation gradually decays as doses and structural
features move farther apart. The GP prior is chosen to allow wide uncertainty in the unknown curves
before including information in the database. If one generated samples from the prior, the credible bands
(Bayesian versions of confidence bands) would be wide. However, if the prior distribution is updated with
information in the full dataset (not just for a single chemical but for all 969 chemicals), a much more
accurate estimate of the curve and narrower credible bands are obtained.

Figure E-2 shows, after fitting of the model, the estimated dose-response curve and 95% credible
bands for one chemical with the observed PXR dose-response data on that chemical. The figure shows
that the estimated curve provides a good fit to the data with narrow uncertainty bands. The estimated
curve differs somewhat from that obtained by estimating the dose—response curve nonparametrically on
the basis of data only on that chemical (not shown); in particular, the uncertainty bands are narrower, and
the curve is shifted slightly from a simple interpolation of the means at each dose. Those properties reflect
the borrowing of information on chemicals that have related structures.
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FIGURE E-2 Estimated dosc—response curve (solid line) for PXR activation and 95% credible interval (dashed
lines) for one chemical. The credible interval is for the mean curve and so is not expected to enclose most of the data
points (circles). The estimated dose—response curve is based on the full QSAR and PXR datasets for 969 chemicals
in addition to the data points shown. Dose is presented as concentration (uM) and response as fold increase in
transcription.

In addition to improving estimation of the dose-response curve for chemicals on which there are
direct dose—response data, the approach can be used to predict dose—response curves for chemicals on
which there 1s information only on structural features. For a chemical that has a known structure but lacks
dose—response data, the actual experimental data can be replaced with a model-based statistical
prediction. That prediction will be more accurate for chemicals that are structurally similar to chemicals
in the database.

To illustrate the performance of the Bayesian modeling, the committee used data on 800 chemicals
as training data on which to base the relationships between chemical structure and PXR dose-response
relationship by fitting a Bayesian hierarchical model. The committee set aside the structure and PXR
dose-response data on the remaining 169 chemicals. To illustrate predictive accuracy, the committee then
compared the predicted curves and credible bands with the held-out data.

Figure E-3 shows predicted PXR dose-response relationships for two chemicals drawn from the 169
chemicals that were not used in the development of the Bayesian predictive model. Thus, the data points
shown in the figure were not used in predicting the dose-response curve and estimating the uncertainty
bands. Note also that the uncertainty bands are wider than those shown in Figure E-2, as expected because
the bands in Figure E-2 include direct observations of the dose—response curve, and the dose—response
prediction in Figure E-3 bases the estimated relationship only on chemical-structure information. For one
chemical, shown first in Figure E-3, there is not a strong observed relationship between chemical dose
and PXR activation, and the predicted dose—response relationship accordingly reflects a lack of clear
dose-response, at least at lower doses. The dose-response relationship for the second chemical is more
defined, as are the direct observations of the dose-response relationship that were not used to create the
curve shown. The curve and confidence bands provide a relatively good fit to the observations.

Although Figure E-3 shows only two chemicals for illustration, good performance was observed
across the 169 “test” chemicals. In cases in which the estimated dose-response curve had wide uncertainty
bands indicating uncertainty in the prediction, the bands were wide enough to contain the curves
providing a good fit to the observed data on the chemical.
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FIGURE E-3 The predicted dosc—response curves (solid line) and 95% credible intervals (dashed lines) for PXR
activation for two chemicals. Dose is presented as concentration (M) and response as fold increase in transcription.
The predictions, based only on chemical structures, match the observed responses (circles) well. That is, data on the
chemicals shown were not used to build the Bayesian model used to make the predictions.

This example illustrates the utility of Bayesian methods for data integration. Primary advantages are
flexibility, the ability to borrow information from different data types, and uncertainty quantification. The
committee used a nonparametric Bayesian approach with a GP prior; there is an increasing literature on
applying similar approaches in a rich variety of applications, and there are many packages for routinely
fitting GP-based models in practice (Vanhatalo et al. 2013). As illustrated in this example, flexible
Bayesian hierarchical modeling avoids overly restrictive parametric assumptions that might not be
justifiable biologically while allowing incorporation of information from different data sources
adaptively. In this context, adaptively means that one learns the similarities in the data sources and how
much it makes sense to use the sources as reflected in the uncertainty bands. The increasingly large
databases of results for a variety of assays and chemicals can thus be used to inform the current analysis
and interpretation and eventually can support the collection of fewer data on future chemicals as the
relationships among chemicals and disparate end points are increasingly understood and reflected in good
predictive models.
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